
NOTATION 

v and w, radial and axial velocity components of the medium, respectively; r and z, 
radial and axial coordinates, respectively; k, suction intensity at the disk surface; p, 
density; D and 9, dynamic and kinematic viscosity coefficients of the medium, respectively; 
Cp, specific heat; K, thermal conductivity; c, conductivity; B, magnetic induction; T, tem- 
perature; ~, angular velocity of the disk; R, disk radius. 
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DYNAMICS OF MACROMOLECULES IN CONVERGENT-CHANNEL FLOWS 

Z. P. Shul'man, E. A. Zal'tsgendler, and B. M. Khusid UDC 532.135 

The deformation of flexible and rigid macromolecules is analyzed under condi- 
tions of convergent-channel flows. 

Certain pieces of equipment employed in chemical technology as well as in biotechnology 
make use of a dispersion medium to compress the stream of a macromolecular solution. For 
this case it is necessary to evaluate the effect of the shape of the convergent nozzle, 
the rate of flow, and the characteristics of the macromolecules on the deformation which 
takes place during the flow in the convergent channel and after passage through the channel 
(Fig. I). The simplest of macromolecules have been used for these calculations, i.e., in 
the shape of flexible dumbbells and rigid axisymmetric ellipsoids. The deformation of the 
macromolecular flow near the axis of the convergent channel is close to elongational (the 
radius of the stream of the solution is considerably smaller than the radius of the conver- 
gent channel). 

Flexible Macromolecules. The behavior of flexible macromolecules in various hydro- 
dynamic situations has been analyzed in a number of papers, among which we will cite [1-6]. 
Flexible macromolecules are modeled by dumbbells with identical "spheres" and a nonlinear 
elastic link between them. If we neglect the inertial forces, then, as a consequence of 
the low macromolecular mass, it is possible to have 

~ + P-f + PB+ P~o = 0. (1) 

The e l a s t i c  f o r c e  F1 = -3Nk0 ~ ( r ' / R ) ~ I / R  2. For  t h e  n o n l i n e a r  f u n c t i o n  ~ ( r ' / R )  we t a k e  t h e  
Warner a p p r o x i m a t i o n  ~ ( r ' / R )  = [1 - ( r ' / R ) 2 ]  -1 With such  an a p p r o x i m a t i o n  t h e  e l a s t i c  
force sharply increases in proportion to the straightening of the circuit and tends toward 
infinity as r' § R, which is in accord with physical sense (for any conformation of the cir- 
cuit, the length of the "head-to-tail" vector of the macromolecule cannot be greater than 
the length of the totally straightened circuit). The force of hydrodynamic friction which 
arises as a consequence of the relative motion of the solution and the spheres of the "dumb- 
bell" is given by Ff = $(r'/R)(? - ~'). The parameter of external friction, a function of 
the conformation of the circuit, is taken [5, 6] to be equal to $ = $0Q(r'/R) = $0 N~r'/R; 
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Fig. i. Flow diagram: i) flow of 
macromolecule solution; 2) flow of 
dispersion medium; 3) flexible macro- 
molecule; 4) rigid macromolecule. 

the velocity v i = Gi'x"J 3 The statistical Brownian force exerted on the "spheres" of the 
dumbbell is given by F B = -k87 in~. The force of interna I friction Fiv in the macromolecule 
is proportional to the rate of deformation, i.e., Fiv = -q~/N(~' -~ • ~'). The quantity 
can be determined from the fact that the resulting moment of the internal friction forces 

2 

is equal to zero, i.e., XR~ X Fir =0, which yields Fiv = -~/N(~'er)~r. 
i=I 

In deriving the equations for the moments <xixj> we have to determine the form of the 
probability-density function ~(t, ~'). The equation of conservation (the Liouville equa- 
tion) for this is 

ar 
0--7- + V(?*) = O. (2) 

With the chosen type of functional relationship for the forces included in Eq. (i), the 
sought quantity ~' is equal to 

1" kO ~p/N (LV In , ) ~ ] -  -- ~ [v ine .  q ~ / N +  

3NkOer r . . . .  ~/N (e~ Sf') e~. - -  + Or'  
(~ + cplN) [1 -- (r'lR) 2] R (pIN + 

(3) 

Let us derive the equation for the second-order moments <xixj>. The averaging is accom- 
plished with utilization of the distribution function. Utilization of (2) and (3) after 
algebraic transformations leads to the following equations for the moments: 

d--7" \ ~  / \ t &  d - - T + 7 -  dr -~- 

ep/N+~ j)/] R z \ (~+~/N) [t--(P/R) 21 / 

- -  2 / ~plN x~x~G._~x~xj \ + O~,~ ( < xjx~ > 6~ + < x~x~ > ~s=), 
\q~lN + ~ r --'~ / 

~, 1=1, 2, 3. 
The resulting equation includes the function ~ = ~(r'/R), whose value is dependent on 

the conformation of the flow circuit. Two averaging methods are possible: substitute the 
explicit expressions for ~ = ~(r'/R) into Eq. (4) and then do the averaging, or assume that 

= ~(<r'>/R). For the numerical solution selected for this paper, we have chosen the sec- 
ond method, although we should point out that the first version presents no fundamental 
difficulties. For purposes of closing Eqs. (4), the fourth-order moments are expressed in 
terms of second-order moments. In addition, in analogy with the selected method of averag- 
ing for the terms containing ~(r'/R), for the Warner function we assume that 1 - (r'/R) 2 = 
1 - <r'2>/R 2. The system of equations (4) is expanded to include the initial conditions at 
which t = 0l 

<x~>=<gZ>___<z~>- R~/[3(N+I)], <xg)=<xz)=<yz>=O (5) 

(in its original state the macromolecular solution was at rest). Analysis of problem (4)- 
(5) shows that under conditions of elongational flow, when only the nondiagonal components 
in the tensor Gij are different from zero, with macromolecular deformation the diagonal com- 
ponents of the tensor aij = <xixj> remain equal to zero. 
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Introduction of the dimensionless variables 
= ~oR2/(6Nk%), z= z'/ao, V = uz/Vin, v = ~n/ao as well as the transition to the Euler coordinate 

system from the Lagrange system of coordinates connected to the macromolecule (the Euler 
system is the laboratory system) (the sign ~ is dropped) reduces problem (4)-(5) to 

and parameters ~ = r'/R, ~--- ~/~0, ~ = ~/~0, a = vz, 

d < x 2 >  { 1 2 ( x 2 > [  1 (pIN l___!_._t - 
dz = 3NQ i 2Q (p/N + Q < r '~ } 

i = 1 ,  2, 3, I I + q~/N <x~> ] } oc ~ F~j + 2~ < x~x,~ ) F~ /V~, 
+ 2((p/N+Q) 1 - - < r " )  (p/N-4-Q ( r " )  

(6) 

where 

and 

Fij ---- % 

0 0) 
- -  1 /2  0 

\ 0 0 I ~ 

(X~)  : 1/[3(N--~ 1)] when t : 0 .  (7)  

System (6), (7) was solved numerically. 

The calculations were carried out for three types of convergent nozzles. The contour 
for the type a nozzle was formed from two circular sections which make a smooth transition 
into each other; for the type b nozzle the contour is described by a single curve; in the 
case of c the nozzle was formed as a straight line touched on a circular section. In each 
of these cases the dimensions were kept constant and equal to D = 1.5 mm, d c = 0.15 mm, 
and L = 8 mm, which made it possible to carry out the comparative analysis. 

The geometry of the convergent channels is given by 

/ ] /3136 -- z ~ -- 55 (0 ~< z <~ 9.733); 

a) r = t 5 , 7 - - - V 3 1 . - ~ H 0 . 6 7 - - z )  2 ( 9 , 7 3 < z ~  I0,671); 

N r = 0.I + 0.9 (1 --z/lO.67)z; 

/ 1 - -  0,0875z (0 ~ z < 9,55); 

c) r = ( 1 2 . 5 3 _ _ ] / 1 2 A 3 z  (10 .67_z)  z ( 9 . 5 5 < z ~ 1 0 . 6 7 ) .  

The calculations were performed both within the geometric cell where X 2 0, as well as 
within the escaping jet where there is no deformation (Su/az = 0 and therefore X = 0). The 
values of X and V were determined from the solution of the hydrodynamic problem for a corre- 
sponding type of cell. Some of the results from these calculations are shown in Figs. 2-3. 
In these calculations, we varied the parameters of the macromolecules (N) and of the De Boer 
number (=). 

At the inlet to the hydrodynamic cell the macromolecules are found in the form of a 
clump, where the square of the length of the "head-to-tail" vector of the macromolecule, ac- 
cording to (7), is equal to (N + 1) -I , while the'second-order moments <x2>, <y2>, <z2> are 
equal. As the flexible macromolecule moves along the axis of the cell, it begins to unwind 
and simultaneously orient itself (the distribution of the second-order moments loses its 
equiprobable distribution). However, the rates of these conversions vary at different sec- 
tions of the hydrodynamic cell. At the initial section of the cell the macromolecule is 
virtually free of any deformation as long as the quantity ~ does not exceed its threshold 
value (Fig. 2). This is then followed by swift stretching out of the macromolecule. As 
the De Boer number increases (for example, as a result of an increase in v, i.e., with a 
reduction in the characteristic time of the process as a consequence of an increase in the 
discharge rate), this stage of swift growth sets in all the more rapidly (Fig. 2a). Having 
attained the maximum level of elongation within the cell, the macromolecules virtually do 
not change in length all the way to the outlet from the cell. Beyond the limits of the cell 
begins the coagulation of the macromolecules, since the tensile stresses generated by the 
presence of a longitudinal velocity gradient are absent. In this case, the smaller the 
De Boer number, the more rapid the deflection of the macromolecules. This is brought about 
by the fact that with unchanging macromolecule properties (the value of the time T is fixed), 

1225 



~z9 
o,8 

.o,,~ 

o 

~8 

~8 

7 @ 9 10 II 15 z 

10 t 

/0  0 

/0 3 

I0 z 

/0 

/0 ! 

/0 ~ 
7 

\ 

I | I ~ !  : I 

8 9 I0 II 15 Z 

Fig. 2 Fig. 3 

Fig. 2. Second-order moment as a function of the longitu- 
dinal coordinate (for cell-type a) with a change in the 
De Boer number (a): i) e = 0.3; 2) i; 3) 3; with a change 
in the macromolecule lengths for corresponding changes in 

(b) as well as for const (~ = i) (c): i) N = I0,000; 
2) 1,000; 3) 500; 4) i00. 

Fig. 3. Macromolecule orientation as a function of the 
longitudinal coordinate with a change in the De Boer number 
(a): i) ~ = 0.3; 2) i; 3) 3; macromolecule length with a 
corresonding change in ~ (b) and with ~ = 1 (c): i) N = 
i0,000; 2) 1,000; 3) 500; 4) i00. 

the smaller ~ numbers correspond to the smaller flow velocities and, respectively, to great- 
er lengths ofstay within the flow. 

If the macromolecule parameters change, for example, the length, i.e., the number N 
of circuit segments (with a fixed segment length a), then with a constant discharge this 
denotes the simultaneous variation of the ~ number as well. Here, both the coordinate ori- 
gin of intensive deformation and the rate of reverse macromolecule coagulation are shifted 
(Fig. 2b). In the case of very long macromolecules, they do not have enough time to develop 
completely, but beyond the cell over a distance of ten calibers they exhibit virtually no 
deflection. 

With a simultaneous change in both the macromolecule parameters (the number n) and in 
the discharge in such a way that the De Boer number remains constant (Fig. 2c), these trends 
become even more pronounced. The fact of the matter is that the discharge must diminish 
in proportion to the increase in N, which leads to a reduction in the stresses acting from 
the fluid on the macromolecule. 

Pronounced orientation of the macromolecule also occurs within the flow, i.e., asym- 
metry of the second moments appears (at the inlet to the cell <z2>i/2/<x2>I/2 = i) (Fig. 3). 
In this case, unlike the function <z2> no plateau of the function <z2>i/2/<x2> I/2 is ob- 
served. This indicates that the macromoleculewhich is already virtually completely 
straightened will only orient itself in the future. Let us note that the maximum degree 
of orientation is not achieved at the outlet from the convergent channel, but somewhat 
closer to it. This comes about because the velocity gradient also attains its extreme val- 
ue within the convergent channel. As a rule, with an increase in the De Boer number, the 
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degree of asymmetry for the distribution of second moments increases (Fig. 3a). However, 
it is also possible for the curves to intersect at sufficiently large De Boer numbers (the 
calculations have been carried out for cells of the a type). This is explained by the fact 
that the absolute values of the longitudinal velocity gradients increase with an increase 
in the discharge rate, and consequently, in the stresses acting on the macromolecule. But 
with this there is a reduction in the time of this effect. The competition between these 
given factors leads to a situation in which, sometimes, the reduction in the stay time ex- 
erts a decisive effect, and then the degree of macromolecule orientation begins to fall with 
an increase in the De Boer number. 

The degree of macromolecule orientation depends strongly on the lengths of the macro- 
molecules. Figure 3b shows this relationship for a fixed discharge flow rate, so that the 
De Boer number changes in proportion to N (a cell of the a type). Let us note that large 
macromolecules even in the free streams at the outlet from the nozzle remain markedly orient- 
ed. 

If with an increase in the number of links (i.e., the relaxation time T) there is a pro- 
portional increase in the stay time within the convergent channel (as a result of a reduction 
in the discharge flow rate) such that = = const, this will compensate the strengthening of 
the degree of orientation as a consequence of the increase in N for virtually the entire 
convergent nozzle. However, in the region of greatest flow compression there will, never- 
theless, appear the factor of circuit length (Fig. 3c) (the curves are shown for a type c 
cell). 

Rigid Macromolecules. We examine the dilution of a suspension of rigid axisymmetric 
particles free from external mass forces or couples, and of sufficiently small size to per- 
mit us, in analyzing the microdynamics, to neglect inertia. An isolated particle is con- 
nected to the unit vector 3(t) directed along the axis of particle symmetry. If we place 
this particle into a time-dependent uniform linear flow 

u (r, t) = G (t) r, 

where G = ~. + ~, ~.T = ~,, ~T = -~ ,  t h e  p a r t i c l e  w i l l  r o t a t e  in  t he  absence of  Brownian cou- 
p l e s  in  accordance  wi th  t h e  f o l l o w i n g  equa t i on  [7]:  

-- {~-p + ;q [E p - -  p(  p E p)]. (8)  
dt 

When there are Brownian couples present, the orientation of a single particle is de- 
fined by the statistical probability-density function N(3, t) which satisfies the Fokker- 
Planck equation in space 3: 

ot dt ( 9 )  

Equat ions  (8) and (9) d e s c r i b e  t h e  e v o l u t i o n  of  t he  m i c r o s t r u c t u r e ;  in  p a r t i c u l a r ,  
from t h e s e  we o b t a i n  t h e  r e l a t i o n s h i p s  f o r  t he  second-o rde r  moments [7]:  

d ( PiPJ > = f~ih ( PkP~ > -- ( PiP~ ) ~Jk + ~ [E~k < PkPJ > + < P~Pk > Esh-- 
~t ( l O )  

-- 2 < PiPjP~Pk > E~k] -- 6D [ ( p~pj > -- 8u/3]. 

Equations (i0), defining the dynamics of the quantity <~>, contain the unknown higher 
moment <p-~-~>. In analogous fashion we can derive the equation which defines the change 
in time for any finite moment 3 relative to the vector, but in each such equation we must 
include a higher moment P- 

In principle, we can solve Eq. (9)for the distribution function N(3, t) of a given 
type of flow and with its aid to determine thesecond-order moments. However, as indicated 
in [7], only the limit cases of very weak or very strong flows, corresponding to almost 
nearly equilibrium or, conversely, strongly nonequilibrium microstructures, lend themselves 
to rigorous asymptotic solution. In the case of a flow of arbitrary intensity, we must 
proceed in a different way, i.e., one in which an infinite chain of moment equations such 
as (10) is broken at the quadratic level by means of a simple interpolation procedure for 
the expression <p--p-~> in terms of <~>. Following [7], we select the form of the link be- 
tween the fourth-order and second-order moments to be as follows: 
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Fig. 4. Second-order moments of the o r i en ta -  
t i o n  vector as a function of the longitudinal 
coordinate with a change in the De Boer n~ber: 
i) ~ = 0.3; 2) i; 3) 3 (a is a cell of the a 
type, b is a cell of the b t~e, c is a cell of 
the c type) and with variation of the cell type 
(= = i): i) cell t~ea ; 2) cell t~e c; 3) 
cell type b. 
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Fig. 5. Degree of orientation as a 
function of the longitudinal coordi- 
nate with a change in the De Boer num- 
ber: i) = = 0.3; 2) I; 3) 3 (a is the 
a-type cell; b is the b-type cell; c 
is the c-type cell) and with variation 
of cell type (~ = i): i) a-type cell; 
2) c-type cell; 3) b-type cell. 

1 
< P~PjP~Pk > E~h -- ~ [6 < p~p~ > E~k ( PkPj > < P~Pj > ( P~Ph > E~h 28~ < P~Ph > 2 E~h + 2~j < P~Pk > E~n[. 

Presenting the fourth-order moments in this way makes it possible, first of all, to accomplish 
the transition to the limit cases of both weak and strong flows, and secondly, to satisfy 
the condition tr<piPj> = i. In the light of the fact that in elongational flows ~ik = 0, 
with the following initial conditions 

(p~> = 1/3, i =  1, 2, 3; <P~Pi>--O, i ~ j ,  ( 1 2 )  

all second-order moments <piPj> with i ~ j retain zero values throughout the entire defor- 
mation period. The displacement velocity tensor 
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since there is symmetry with respect to the components x, y. 

Transition to dimensionless variables in the laboratory coordinate system leads us to 
the following system of equations: 

d<p~> [ { 2 [2 ( p:>Z <p:>-5<p~)-5 
dz - h k ~  -<p~.>-5 , - U  ""  

-5 p~> < p: '? }-- < p: - 5 + ] l ( V a ) ;  (13) 

2_ 
dz -- | [  ' 5 

_ ~2 } ( 2 ] -5 2(<p~> <,~>)1 -- ,p~ >--1/3 l(Vo~). 

Some of the results from the numerical solution of problems (12) and (13) are shown 
in Figs. 4 and 5. The calculations were conducted for an extended ellipsoid exhibiting an 
axis ratio of a/b = 7. Here we have a coefficient of the form Ii = 0.96 (an increase in 
the degree of anisodiametricity of the particles has virtually no effect on the results of 
the numerical solution). As before, the De Boer number has a decisive effect on the dynam- 
ics of deformation. Rigid macromolecules manage to "accumulate" beneath the external flow, 
so that the large orientation (Fig. 4) corresponds to the large De Boer numbers. The 
flexible macromolecules must not only be oriented, but they change their characteristic 
dimensions, which results in their visual persistence. The rate of growth in the macro- 
molecule "orientability" is strongly dependent on the geometry of the convergent nozzle. 
At the inlet section we find the maximum orientation corresponding to a cell of the b type; 
however, the most pronounced orientation effects are noted at the outlet from the conver- 
gent channel in the case of flow in cell a. As we penetrate deeper into the convergent 
channel, we note an increase in the degree of asymmetry for the distribution of the second 
moments. As a consequence of the fact that the rigid macromolecules, unlike the flexible 
macromolecules, do not change their length as a result of deformation, their degree of ori- 
entation is substantially less than in the case of flexible macromolecules. This is con- 
firmed by comparison of the results shown in Figs. 3 and 5. At the outlet from the con- 
vergent channel (flow in a free jet) the rigid macromolecules are more markedly disoriented, 
which is also explained by their relatively small length (in comparison to the flexible 
macromolecules). 

In Fig. 5d we find a comparison of the orientations for the macromolecules in flows 
through various types of convergent channels. Since the rates of flow compression in a 
type b nozzle are maximum at the inlet segment, there is a corresponding maximum macromole- 
cule orientation, but as has already been mentioned earlier, in conclusion, a nozzle of the 
a type is much to be preferred. 

NOTATION 

N is the number of statistical segments in the macromolecule; a , segment length; k, 
Boltzmann constant; e, temperature; R = Na, length of the macromolecule in the completely 
straightened state; Y', head-to-tail vector of the macromolecule; V, velocity of the dis- 
persion medium; ~, angular speed of macromolecule rotation; xi, projection of the Y' vector 
onto the i axis; G0, normed parameter of external friction; ~, internal friction parameter; 
a0, initial diameter of the convergent channel; Vin, velocity of the dispersion medium at 
the inlet to the convergent channel; G, velocity-gradient tensor; E, strain-rate tensor; 
~, vortex tensor; kl, shape factor (for an ellipsoidal particle kl = ( a= - b=)/( a2 + b2), 
where a and b are the major and minor semiaxes. The superscript T denotes the transposed 
tensor. 
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ACOUSTIC FLOWS AND ACOUSTOOPTIC INTERACTION IN A GASEOUS 

MEDIUM 

V. I. Zagorel'skii, D. O. Lapotko, O. G. Martynenko, 
and G. M. Pukhlov 

UDC 534.286:535.421 

The formation of secondary flows generated when intensive ultrasonic waves are 
propagated and absorbed in a gaseous medium is investigated experimentally. 
The effectof acoustic flows and sound absorption on acoutooptic interaction 
for diffraction of light on acoustic waves in a gas is investigated. 

The propagation with absorption of large-amplitude acoustic waves results in the forma- 
tion of intensive secondary flows (acoustic wind) in the region of the acoustic beam [i]. 
The investigation of such flows in a gas is of independent interest and is also of interest 
in connection with the need to study the effect of the acoustic wind on different processes 
coinciding with it in space and time. Thus, in realizing diffraction of light on ultra- 
sonic waves in a gaseous medium for the purpose of active influence on the light radiation 
one needs high-frequency, high-intensity acoustic fields [2]. In this case the frequency 
and intensity of the sound are large enough to result in its absorption and the development 
of secondary acoustic flows in the medium. The existing theories of diffraction of light on 
acoustic waves [3, 4] do not allow one to take account of the acoustic wind, because they 
are oriented toward condensed acoustooptic media in which such flows are either negligibly 
small or do not arise at all. 

In the present work the development of the acoustic wind arising when ultrasonic waves 
with frequency equal to i MHz are absorbed and the effect of secondary flows on acoustooptie 
interaction in the Bragg regime are investigated experimentally. Air and xenon at atmos- 
pheric pressure are used as a working medium. The sound was radiated into the gas by pulses 
of duration up s i sec and intensity up to !40 dB. Dissipative phenomena that arise in the 
propagation of acoustic waves were investigated by shadow methods on the IAB-451 apparatus. 
Since a variation in the velocity of the medium in the propagation of sound is spatially re- 
lated to a variation in its temperature, the intensity of the flows was estimated from the 
angle of deflection of light in a shadow device e measured directly in the experiment. 
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